6 research outputs found

    Entropy in general physical theories

    Get PDF
    Information plays an important role in our understanding of the physical world. We hence propose an entropic measure of information for any physical theory that admits systems, states and measurements. In the quantum and classical world, our measure reduces to the von Neumann and Shannon entropy respectively. It can even be used in a quantum or classical setting where we are only allowed to perform a limited set of operations. In a world that admits superstrong correlations in the form of non-local boxes, our measure can be used to analyze protocols such as superstrong random access encodings and the violation of `information causality'. However, we also show that in such a world no entropic measure can exhibit all properties we commonly accept in a quantum setting. For example, there exists no`reasonable' measure of conditional entropy that is subadditive. Finally, we prove a coding theorem for some theories that is analogous to the quantum and classical setting, providing us with an appealing operational interpretation.Comment: 20 pages, revtex, 7 figures, v2: Coding theorem revised, published versio

    Composability in quantum cryptography

    Full text link
    In this article, we review several aspects of composability in the context of quantum cryptography. The first part is devoted to key distribution. We discuss the security criteria that a quantum key distribution protocol must fulfill to allow its safe use within a larger security application (e.g., for secure message transmission). To illustrate the practical use of composability, we show how to generate a continuous key stream by sequentially composing rounds of a quantum key distribution protocol. In a second part, we take a more general point of view, which is necessary for the study of cryptographic situations involving, for example, mutually distrustful parties. We explain the universal composability framework and state the composition theorem which guarantees that secure protocols can securely be composed to larger applicationsComment: 18 pages, 2 figure

    Quantum key distribution based on orthogonal states allows secure quantum bit commitment

    Full text link
    For more than a decade, it was believed that unconditionally secure quantum bit commitment (QBC) is impossible. But basing on a previously proposed quantum key distribution scheme using orthogonal states, here we build a QBC protocol in which the density matrices of the quantum states encoding the commitment do not satisfy a crucial condition on which the no-go proofs of QBC are based. Thus the no-go proofs could be evaded. Our protocol is fault-tolerant and very feasible with currently available technology. It reopens the venue for other "post-cold-war" multi-party cryptographic protocols, e.g., quantum bit string commitment and quantum strong coin tossing with an arbitrarily small bias. This result also has a strong influence on the Clifton-Bub-Halvorson theorem which suggests that quantum theory could be characterized in terms of information-theoretic constraints.Comment: Published version plus an appendix showing how to defeat the counterfactual attack, more references [76,77,90,118-120] cited, and other minor change

    Bibliography

    No full text
    corecore